Private Pilot Licence Examinations – 082 Principles of Flight Helicopter

		Aeroplane		Helicopter	
Syllabus	Sullabus details & Associated Learning Objective		Bridge		Bridge
Reference	Syllabus details & Associated Learning Objective	PPL	Course	PPL	Course
082.00.00.00	PRINCIPLES OF FLIGHT: HELICOPTER				
082.01.01.00	Subsonic aerodynamics				
082.01.01.01	Basic concepts, laws and definitions			х	х
082.01.01.02	Conversion of units			х	х
082.01.01.03	Definitions and basic concepts about air:			х	х
	(a) the atmosphere and International Standard			v	v
	Atmosphere;			^	^
	(b) density;			х	х
	(c) influence of pressure and temperature on density.			х	х
082.01.01.04	Newton's laws:			х	х
	(a) Newton's second law: Momentum equation;			х	х
	(b) Newton's third law: action and reaction.			х	х
082.01.01.05	Basic concepts about airflow:			х	х
	(a) steady airflow and unsteady airflow;			х	х
	(b) Bernoulli's equation;			х	х
	(c) static pressure, dynamic pressure, total pressure				
	and stagnation point;			X	Х
	(d) TAS and IAS;			х	х
	(e) two-dimensional airflow and three-dimensional			v	v
	airflow;			~	X
	(f) viscosity and boundary layer.			х	х
082.01.01.06	Two-dimensional airflow			х	х
082.01.01.07	Aerofoil section geometry:			х	Х
	(a) aerofoil section;			х	х
	(b) chord line, thickness and thickness to chord ratio of			v	v
	a section;			^	^
	(c) camber line and camber;			x	х
	(d) symmetrical and asymmetrical aerofoils sections.			x	х
082.01.01.08	Aerodynamic forces on aerofoil elements:			x	х
	(a) angle of attack;			х	Х
	(b) pressure distribution;			x	х
	(c) lift and lift coefficient			x	х
	(d) relation lift coefficient: angle of attack;			x	х
	(e) profile drag and drag coefficient;			x	х
	(f) relation drag coefficient: angle of attack;			x	х
	(g) resulting force, centre of pressure and pitching			x	x
	moment.			^	~
082.01.01.09	Stall:			х	х
	(a) boundary layer and reasons for stalling;			х	х
	(b) variation of lift and drag as a function of angle of			x	x
	attack;				
	(c) displacement of the centre of pressure and pitching moment.			x	х
082.01.01.10	Disturbances due to profile contamination:			х	х

	(a) ice contamination;	x	х
	(b) ice on the surface (frost, snow and clear ice).	х	х
082.01.01.11	The three-dimensional airflow round a wing and a fuselage	х	х
082.01.01.12	The wing:	х	х
	(a) planform, rectangular and tapered wings;	х	х
	(b) wing twist.	х	х
082.01.01.13	Airflow pattern and influence on lift:	х	х
	(a) span wise flow on upper and lower surface;	х	х
	(b) tip vortices;	х	х
	(c) span-wise lift distribution.	х	х
082.01.01.14	Induced drag: causes and vortices	х	х
082.01.01.15	The airflow round a fuselage:	х	х
	(a) components of a fuselage;	х	х
	(b) parasite drag;	х	х
	(c) variation with speed.	х	х
082.02.01.00	Transonic aerodynamics and compressibility effects		
082.02.01.01	Airflow velocities	х	х
082.02.01.02	Airflow speeds:	х	х
	(a) speed of sound;	х	х
	(b) subsonic, high subsonic and supersonic flows.	х	х
082.02.01.03	Shock waves:	х	х
	(a) compressibility and shock waves;	х	х
	(b) the reasons for their formation at upstream high		
	subsonic airflow;	x	Х
	(c) their effect on lift and drag.	х	х
082.02.01.04	Influence of wing planform: sweep-angle	х	х
082.03.01.00	Rotorcraft types	х	х
082.03.01.01	Rotorcraft	х	х
082.03.01.02	Rotorcraft types:	х	х
	(a) autogyro;	х	х
	(b) helicopter.	х	х
082.03.01.03	Helicopters	х	х
082.03.01.04	Helicopters configurations: the single main rotor helicopter	х	х
082.03.01.05	The helicopter, characteristics and associated terminology:	х	х
	(a) general lay-out, fuselage, engine and gearbox;	х	х
	(b) tail rotor, fenestron and NOTAR;	х	х
	(c) engines (reciprocating and turbo shaft engines);	х	х
	(d) power transmission;	х	х
	(e) rotor shaft axis, rotor hub and rotor blades;	х	х
	(f) rotor disc and rotor disc area;	х	х
	(g) teetering rotor (two blades) and rotors with more		
	than two blades;	x	Х
	(h) skids and wheels;	х	х
	(i) helicopter axes and fuselage centre line;	х	х
	(j) roll axis, pitch axis and normal or yaw axis;	х	х
	(k) gross mass, gross weight and disc loading.	х	х
082.04.01.00	Main rotor aerodynamics	х	х
082.04.01.01	Hover flight outside ground effect	х	х
082.04.01.02	Airflow through the rotor discs and round the blades:	х	х
	(a) circumferential velocity of the blade sections;	х	х
	(b) induced airflow, through the disc and downstream;	х	х

	(c) downward fuselage drag;	x	х
	(d) equilibrium of rotor thrust, weight and fuselage	~	×
_	drag;	^	^
	(e) rotor disc induced power;	х	Х
	(f) relative airflow to the blade;	х	Х
	(g) pitch angle and angle of attack of a blade section;	х	Х
	(h) lift and profile drag on the blade element;	х	Х
	(i) resulting lift and thrust on the blade and rotor thrust;	x	x
	(j) collective pitch angle changes and necessity of blade feathering;	 x	x
	(k) required total main rotor-torque and rotor-power;	х	x
	(I) influence of the air density.	х	х
082.04.01.03	Anti-torque force and tail rotor:	х	х
	(a) force of tail rotor as a function of main rotor- torque;	х	x
	(b) anti-torque rotor power;	х	х
	(c) necessity of blade feathering of tail rotor blades and yaw pedals.	х	x
082.04.01.04	Maximum hover altitude OGE:	х	х
	(a) total power required and power available;	х	х
	(b) maximum hover altitude as a function of pressure altitude and OAT.	х	x
082.04.01.05	Vertical climb	x	х
082.04.01.06	Relative airflow and angles of attack:	х	х
	(a) climb velocity VC, induced and relative velocity and angle of attack;	x	х
	(b) collective pitch angle and blade feathering.	х	х
082.04.01.07	Power and vertical speed:		
	(a) induced power, climb power and profile power;	Х	x
	(b) total main rotor power and main rotor torque;	х	х
	(c) tail rotor power;	х	х
	(d) total power requirement in vertical flight.	х	х
082.04.01.08	Forward flight	х	х
082.04.01.09	Airflow and forces in uniform inflow distribution:	x	х
	(a) assumption of uniform inflow distribution on rotor disc;	х	x
	(b) advancing blade (90°) and retreating blade (270°);	х	х
	(c) airflow velocity relative to the blade sections, area of reverse flow;	x	x
	(d) lift on the advancing and retreating blades at constant pitch angles;	х	x
	(e) necessity of cyclic pitch changes;	х	х
	(f) compressibility effects on the advancing blade tip and speed limitations;	х	x
	(g) high angle of attack on the retreating blade, blade stall and speed limitations;	x	x
	(h) thrust on rotor disc and tilt of thrust vector;	х	х
	(i) vertical component of the thrust vector and gross weight equilibrium;	x	x

	(j) horizontal component of the thrust vector and drag	x	х
082 04 01 10	The flare (power flight):	×	x
002.04.01.10	(a) thrust reversal and increase in rotor thrust:	x	x
	(b) increase of rotor RPM on non governed rotor.	x	X
082.04.01.11	Power and maximum speed:	x	X
	(a) induced power as a function of helicopter speed:	x	X
	(b) rotor profile power as a function of helicopter		
	speed;	x	х
	(c) fuselage drag and parasite power as a function of forward speed;	x	х
	(d) tail rotor power and power ancillary equipment;	х	х
	(e) total power requirement as a function of forward	×	v
	speed;	^	^
	(f) influence of helicopter mass, air density and drag of additional external equipment;	х	х
	(g) translational lift and influence on power required.	х	х
082.04.01.12	Hover and forward flight in ground effect	х	х
082.04.01.13	Airflow in ground effect and downwash: rotor power decrease as a function of rotor height above the ground at constant helicopter mass	x	х
082.04.01.14	Vertical descent	х	х
082.04.01.16	Vertical descent, power on:	х	х
	(a) airflow through the rotor, low and moderate descent speeds;	х	х
	(b) vortex ring state, settling with power and consequences.	x	х
082.04.01.17	Autorotation:	х	х
	(a) collective lever position after failure;	х	х
	(b) up flow through the rotor, auto-rotation and anti- autorotation rings;	x	х
	(c) tail rotor thrust and yaw control;	x	х
	(d) control of rotor RPM with collective lever;	х	х
	(e) landing after increase of rotor thrust by pulling		
	collective and reduction in vertical speed.	x	Х
082.04.01.18	Forward flight: Autorotation	х	х
082.04.01.19	Airflow through the rotor disc:	х	х
	(a) descent speed and up flow through the disc;	х	х
	(b) the flare, increase in rotor thrust, reduction of vertical speed and ground speed.	x	x
082.04.01.20	Flight and landing:	х	х
	(a) turning;	х	х
	(b) flare;	х	х
	(c) autorotative landing;	х	х
	(d) height or velocity avoidance graph and dead man's curve.	х	х
082.05.01.00	Main rotor mechanics	х	х
082.05.01.01	Flapping of the blade in hover	х	x
082.05.01.02	Forces and stresses on the blade:	Х	х
	(a) centrifugal force on the blade and attachments;	х	х
	(b) limits of rotor RPM;	х	х

	(c) lift on the blade and bending stresses on a rigid attachment;	x	х
	(d) the flapping hinge of the articulated rotor and flapping hinge offset;	x	х
	(e) the flapping of the hinge less rotor and flexible element.	x	x
082.05.01.03	Coning angle in hover:	x	х
	(a) lift and centrifugal force in hover and blade weight negligible	x	х
	(b) flapping, tip path plane and disc area.	х	х
082.05.01.04	Flapping angles of the blade in forward flight	х	х
082.05.01.05	Forces on the blade in forward flight without cyclic feathering:	x	x
	(a) aerodynamic forces on the advancing and retreating blades without cyclic feathering;	x	x
	(b) periodic forces and stresses, fatigue and flapping hinge;	x	x
	(c) phase lag between the force and the flapping angle(about 90°);	x	x
	(d) flapping motion of the hinged blades and tilting of the cone and flap back of rotor;	x	х
	(e) rotor disc attitude and thrust vector tilt.	х	х
082.05.01.06	Cyclic pitch (feathering) in helicopter mode, forward flight:	х	х
	(a) necessity of forward rotor disc tilt and thrust vector tilt;	x	х
	(b) flapping and tip path plane, virtual rotation axis or no flapping axis and plane of rotation;	x	x
	(c) shaft axis and hub plane;	x	x
	(d) cyclic pitch change (feathering) and rotor thrust vector tilt;	x	x
	(e) collective pitch change, collective lever, swash plate, pitch link and pitch horn;	x	x
	(f) cyclic stick, rotating swash plate and pitch link movement and phase angle.	x	x
082.05.01.07	Blade lag motion	х	х
082.05.01.08	Forces on the blade in the disc plane (tip path plane) in forward flight:	x	x
	(a) forces due to the Coriolis effect because of the flapping;	x	x
	(b) alternating stresses and the need of the drag or lag hinge.	x	x
082.05.01.09	The drag or lag hinge:	х	x
	(a) the drag hinge in the fully articulated rotor;	х	х
	(b) the lag flexure in the hinge less rotor;	х	x
	(c) drag dampers.	х	x
082.05.01.10	Ground resonance:	х	x
	(a) blade lag motion and movement of the centre of gravity of the blades and the rotor;	x	x
	(b) oscillating force on the fuselage;	х	x
	(c) fuselage, undercarriage and resonance.	х	х
082.05.01.11	Rotor systems	x	х

082.05.01.12	See-saw or teetering rotor	х	х
082.05.01.13	Fully articulated rotor:	х	х
	(a) three hinges arrangement;	х	х
	(b) bearings and elastomeric hinges.	х	х
082.05.01.14	Hinge less rotor and bearing less rotor	х	х
082.05.01.15	Blade sailing:	х	х
	(a) low rotor RPM and effect of adverse wind;	х	х
	(b) minimising the danger;	х	х
	(c) droop stops.	х	х
082.05.01.16	Vibrations due to main rotor:	х	х
	(a) origins of the vibrations: in plane and vertical;	х	х
	(b) blade tracking and balancing.	х	х
082.06.01.00	Tail rotors	х	х
082.06.01.01	Conventional tail rotor	х	х
082.06.01.02	Rotor description:	х	х
	(a) two-blades tail rotors with teetering hinge;	х	х
	(b) rotors with more than two blades;	х	х
	(c) feathering bearings and flapping hinges;	х	х
	(d) dangers to people and to the tail rotor, rotor height	×	
	and safety.	X	Х
082.06.01.03	Aerodynamics:	х	х
	(a) induced airflow and tail rotor thrust;	х	х
	(b) thrust control by feathering, tail rotor drift and roll;	x	х
	(c) effect of tail rotor failure and vortex ring.	х	х
082.06.01.04	The fenestron: technical lay-out	х	х
082.06.01.05	The NOTAR: technical lay-out	х	х
082.06.01.06	Vibrations: high frequency vibrations due to the tail rotors	х	х
082.07.00.00	Equilibrium, stability and control	х	х
082.07.01.00	Equilibrium and helicopter attitudes	х	х
082.07.01.01	Hover:	х	х
	(a) forces and equilibrium conditions;	х	х
	(b) helicopter pitching moment and pitch angle;	х	х
	(c) helicopter rolling moment and roll angle.	х	х
082.07.01.02	Forward flight:	х	х
	(a) forces and equilibrium conditions;	х	х
	(b) helicopter moments and angles;	х	х
	(c) effect of speed on fuselage attitude.	х	х
082.07.01.03	Control	х	х
082.07.01.04	Control power	х	х
	(a) fully articulated rotor;	х	х
	(b) hinge less rotor;	х	х
	(c) teetering rotor.	х	х
082.07.01.05	Static and dynamic roll over	х	х
082.08.01.00	Helicopter performances	Х	х
082.08.01.01	Engine performances	Х	х
082.08.01.02	Piston engines:	х	х
	(a) power available;	х	х
	(b) effects of density altitude.	х	х
082.08.01.03	Turbine engines:	х	х
	(a) power available;	х	х

	(b) effects of ambient pressure and temperature.	x	х
082.08.01.04	Helicopter performances	х	х
082.08.01.05	Hover and vertical flight:	х	х
	(a) power required and power available;	х	х
	(b) OGE and IGE maximum hover height;	х	х
	(c) influence of AUM, pressure, temperature and density.	x	х
082.08.01.06	Forward flight:	х	х
	(a) maximum speed;	х	х
	(b) maximum rate of climb speed;	х	х
	(c) maximum angle of climb speed;	х	х
	(d) range and endurance;	х	х
	(e) influence of AUM, pressure, temperature and density.	x	x
082.08.01.07	Manoeuvring:	x	х
	(a) load factor;	х	х
	(b) bank angle and number of g's;	х	х
	(c) manoeuvring limit load factor.	х	х
082.08.01.08	Special conditions:	х	х
	(a) operating with limited power;	x	х
	(b) over pitch and over torque.	x	x